Numerical simulations of time-dependent partial differential equations
نویسندگان
چکیده
When a time-dependent partial differential equation (PDE) is discretized in space with a spectral approximation, the result is a coupled system of ordinary differential equations (ODEs) in time. This is the notion of the method of lines (MOL), and the resulting set of ODEs is stiff; the stiffness may be even exacerbated sometimes. The linear terms are the primarily responsible for the stiffness, with a rapid exponential decay of some modes (as in a dissipative PDE), or a rapid oscillation of somemodes (as in a dispersive PDE). Therefore, for a time-dependent PDE which combines low-order nonlinear terms with higher-order linear terms, it is desirable to use a higher-order approximation both in space and in time. Along our research, we have focused on a particular case of spectral methods, the socalled pseudo-spectralmethods, to solve numerically time-dependent PDEs using different techniques: an integrating factor, in de la Hoz and Vadillo (2010); an exponential time differencing method, in de la Hoz and Vadillo (2008); and differentiation matrices in the theoretical frame of matrix differential equations, in de la Hoz and Vadillo (2012, 2013a,b). This paper, which is a unified review of those contributions, aims at providing a better understanding of those methods, by illustrating their variety and, more importantly, their power. Furthermore, we also give emphasis to choosing adequate schemes to advance in time. © 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Numerical solution of time-dependent foam drainage equation (FDE)
Reduced Differental Transform Method (RDTM), which is one of the useful and effective numerical method, is applied to solve nonlinear time-dependent Foam Drainage Equation (FDE) with different initial conditions. We compare our method with the famous Adomian Decomposition and Laplace Decomposition Methods. The obtained results demonstrated that RDTM is a powerful tool for solving nonlinear part...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کاملAn algebraic calculation method for describing time-dependent processes in electrochemistry – Expansion of existing procedures
In this paper an alternative model allowing the extension of the Debye-Hückel Theory (DHT) considering time dependence explicitly is presented. From the Electro-Quasistatic approach (EQS) introduced in earlier studies time dependent potentials are suitable to describe several phenomena especially conducting media as well as the behaviour of charged particles (ions) in electrolytes. This leads t...
متن کاملA numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative
In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 295 شماره
صفحات -
تاریخ انتشار 2016